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Introduction 

This study considers the basic problem of determining the flow, inside a free-surface potential- 

flow region, that corresponds to a given flow at the surface bounding the potential-flow region. 

A new fundamental boundary integral representation is given. This representation of linear free- 

surface potential flows, called velocity representation, explicitly defines the velocity u within the 

potential-flow region in terms of the velocity u at the boundary surface. Specifically, the velocity 

representation defines the velocity inside a potential-flow domain in terms of source and vortex 

distributions with strength equal to the normal component u • n and the tangential component 

u x n of the velocity at the boundary surface. 

Thus, the velocity representation does not involve the velocity potential (j>. This property is 

a major difference between the velocity representation and the classical boundary integral repre- 

sentation, called potential representation hereafter, which defines the velocity potential 0 within a 

potential-flow region in terms of the potential (f> and its normal derivative d(f>/dn at the boundary 

surface. The velocity representation can therefore be used to couple a viscous flow, for which a 

velocity potential cannot be defined, and a potential flow in a direct manner, i.e. without having 

to solve an integral equation as is necessary if the potential representation is used. Specifically, the 

potential representation requires a two-step procedure: an integral equation must first be solved 

to determine <j> at the boundary surface from the known boundary value of d4>/dn, and (p and V</> 

can subsequently be determined at interior points from the boundary values of </> and dfi/dn. 

Another important difference between the classical potential representation and the velocity 

representation given here is that the velocity representation defines ü in terms of first derivatives of 

the Green function G, whereas u can only be obtained from the potential representation using either 

analytical differentiation of the potential representation, which involves second-order derivatives of 

G, or numerical differentiation of 0. 

The new velocity representation and, for completeness, the classical potential representation are 

given here for generic free-surface potential flows and for four basic classes of flows corresponding 

to the particular cases of (i) an infinitely rigid or soft free-surface plane, (ii) diffraction-radiation of 

time-harmonic water waves without forward speed, (iii) steady ship waves, and (iv) time-harmonic 

ship waves (diffraction-radiation with forward speed). These flow representations, given here for 

deep water, can be extended to uniform finite water depth, and indeed can be extended to a broader 

class of problems involving dispersive waves that propagate in the presence of a planar boundary. 



The velocity representation provides a new mathematical basis for computing free-surface po- 

tential flows about nonlifting and lifting bodies using free-surface Green functions. In particular, 

this boundary-integral representation can be used together with the Fourier-Kochin approach ex- 

pounded in Noblesse and Yang [1], as is indeed shown here. Specifically, the velocity representation 

and the Fourier-Kochin approach are shown to yield remarkably simple analytical representations 

of the waves generated by an arbitrary boundary velocity distribution for time-harmonic flows, with 

and without forward speed, and for steady flows. The importance of the Fourier-Kochin representa- 

tions of waves for practical purposes is demonstrated, for the case of steady ship waves, in Guillerm 

and Alessandrini [2] and Yang et al. [3,4]. Specifically, the Fourier-Kochin representation of steady 

ship waves is coupled with nearfield calculations based on the RANS and the Euler equations in 

Guillerm and Alessandrini [2] and Yang et al. [3], respectively, and is applied to the design of a 

wave cancellation multihull ship in Yang et al. [4]. 

Coordinates (£, r\, () and (x, y, z) are nondimensional with respect to a reference length L that 

characterizes the size of the ship or offshore structure. The velocity u = (u, v, w) is nondimensional 

with respect to a characteristic reference velocity U, e.g. the forward speed U of the ship, and the 

velocity potential </> is nondimensional with respect to the reference potential UL. The z axis is 

vertical and points upward, and the mean free-surface plane is taken as the plane 2 = 0. For steady 

and time-harmonic flow about a ship advancing with speed U in calm water or in waves, the x axis 

is chosen along the path of the ship and points toward the ship bow, and the velocity u corresponds 

to the flow disturbance due to the ship. 

Consider a potential-flow domain bounded by a closed boundary surface E defined as 

E = EWUEFUE°°       with       EW=EHUEW 

The surface EH is an arbitrary control surface outside the viscous boundary layer that surrounds 

a ship hull (or other body, e.g. an offshore structure) at or below the free surface. If viscous effects 

are ignored, EH may be taken as the wetted surface of the ship hull. The surface Y,w represents 

the outer edge of the viscous wake trailing the ship, or a control surface outside the viscous wake. 

For a ship equipped with lifting surfaces, e.g. a sailboat, T,w includes the two sides of every vortex 

sheet behind the ship hull. For a multihull ship, the hull+wake surface Y,HW consists of several 

component surfaces, which correspond to the separate hull components of the ship and their wakes. 

The surface Y,HW is bounded upward by the mean free-surface plane z = 0. The surface EF stands 

for the portion of the mean free-surface plane outside T,HW.  The surface E°° represents a large 



boundary surface that surrounds Y,H. THW and T00 are the intersection curves between the free 

surface EF and the surfaces T.HW and E°°. 

Boundary integral representations are obtained in the study, for both the potential </> and the 

velocity u = V<f>, using elementary identities in vector calculus (divergence theorem and Stokes' 

theorem) in the 3D flow region bounded by the closed surface E and the 2D free-surface region EF 

bounded by the curve r^^UT00 . The surface E00 and the curve T00 are not explicitly mentioned 

hereafter because they yield contributions that vanish in the limit when the surface E°° is chosen 

infinitely far from the surface Y,H. 

The unit vector n = (nx,ny,nz) normal to the boundary surface E points inside the mean flow 

domain. Thus, the unit vector normal to the mean free surface T,F is n = (0,0,-1). The unit 

vector t = (tx, ty, 0) tangent to the boundary curve YHW
\JT

0C
 is oriented clockwise (looking down) 

along THW and counterclockwise along r°°. The unit vector normal to the boundary curve THW 

points inside the mean flow domain, like n, and is given by v = (—ty, tx, 0). 

Potential and velocity representations for elementary Rankine singularities 

The velocity field u = (u, v, w) at a point £ = (£, 77, C) inside the flow domain is given by 

u = V^ <p(£) where V^ = (d^ , dv , d$). The potential <f) can be expressed as 

<t> = i>~X (la) 

The potentials ip and x respectively correspond to distributions of sources and dipoles over the 

boundary surface E : 

Mg) = f dA(x) u(x) ■ n(x) G(f,£) (lb) 

X(0 =//4(z) 4(P) V*G(f,£) -n(x) (lc) 

Here Vx = (dx ,dy ,dz) and the Green function G is the potential of a simple Rankine source in 

an unbounded fluid, i.e. 

47rG = -l/r       with       r = yf (x-£)2+ (y~v)2+ (z~02 (2) 

The velocity derived from the potential representation (1) is given by 

U= Ve<£ = Vi^-V^x = u'4,-ux (3a) 



The velocity components ü^ = V^ ip and u x = V^ x are given by 

£*(£) = fdA(x) u(x) -n(x) V€G(f,£) 

ux(O = /^(f)0(f)V^[VIG(C',x)-n(f)- 

(3b) 

(3c) 

The classical representation of the velocity u given by (3) involves the potential <f> in (3c). The flow 

representation (3) is then called the potential representation hereafter. The source component u^ 

is defined in terms of the first derivatives of the Green function G. However, the dipole component 

ux involves second derivatives of G. Another representation of the component ux that is defined 

in terms of a vortex sheet at the boundary surface and only involves first derivatives of G is 

u x (£) = / dA(x) [ u (£) x n(x)} x V?G(|*, x) (4) 

The alternative representation (4) of the velocity component ux is identical to (3c) if 

dA [(/)Vc(VIG-n)+VcGx (V^xn)]=0 (5) k 
The relations V^G = -VXG and V^G = 0, which readily follow from (2), show that the x ,y ,z 

components of (5) are given by Vx■ n, Vy- n, Vz■ n where the vectors Vx,Vy, Vz are defined as 

Vx = 

(4>Gy)y + {(j>Gz 

-(<f>Gy)x 

-{4>Gz)x 

\   vy=l 
-{4>Gx)y 

(4>GZ)Z + (<f>Gx)a 

-(<PGz)y 

Vz = { 

-{<f>Gx)z 

~{(i>Gy)z 

[<j>GX)X  +  {<t>Gy)y 

(6) 

We have V-Vx = 0,V-V^= o,V-V^= 0. The divergence theorem applied to the vector fields 

Vx, Vv, Vz and the closed surface £ then shows that the x,y ,z components of (5) are null. 

By substituting (3b) and (4) into (3a) we obtain 

u{0 = fdA{x) {[u{x) -n{x)] VCG(£*,£) - [u(x) x n(x)] xV{G(|*,f)) 

which yields 

(7a) 

u u-n G$ + (uxn)zGv - (uxn)yG^ 

= 1dAl u-n Gv + {uxn)x Gc - (uxn)z G^ \ (7b) 
J ZJ 

u-n G^ + (uxn)y G$ - (üxn)xGv 

This expression defines the velocity u(£) at a point £ inside a flow domain, bounded by a boundary 

surface £, in terms of source and vortex distributions with strength equal to the normal and tan- 

gential velocity components u-n and u x n of the velocity u(x) at E . The flow representation (7), 



which defines ü(£) in terms of the boundary velocity distribution u(x), is called velocity represen- 

tation. This representation only involves the velocity Ü and first derivatives of the Green function 

G, whereas the potential representation (3) involves the potential </> and second derivatives of G. 

Velocity and potential representations for generic free-surface flows 

The potential representation (1) and the related representation (3) for the velocity hold for a 

generic Green function G of the form 

4nG = -l/r + GH 

Here, the function GH is harmonic, i.e. satisfies the Laplace equation V2GH = 0, in the region 

bounded by the surface E. Green functions associated with boundary conditions at the mean 

free-surface plane z = 0 can be expressed as 

G(Z,x) = Gs(x-Z,y-r1,z-0 + GF(x-Z,y -r),z + 0 

Gs corresponds to a simple Rankine source and is given by 

4TTG
5
= -1/r       with       r = <J (x-£)2 + {y-rj)2 + {z-Q2 

(8a) 

(8b) 

GF accounts for free-surface effects and is harmonic in the region bounded by £. The simple- 

singularity component Gs is a function of the three variables (x — £,y — r),z — (). The free-surface 

component GF is a function of (x — £, y — rj, z + () and satisfies the relations 

F nF< 72 riF _ (G*,G>,G>) = (-G>,-G>y,G>)       and       VX'G* = 0 (9) 

The potential representation (3) and the decomposition (8a) of the Green function G show that 

the velocity field u can be expressed as 

u = us+uF (10a) 

The components us and uF correspond to Gs and GF in (8a). Expressions (8b) and (2) show 

that the simple-singularity component u° can be expressed in the form (7b), i.e 

w" 
-L dA< 

■u-n G% uxn)VGf Üxn)zG$ + { 

u-n Gl - [uxn)xGs
z + (uxn)z Gs

x 

-u-n Gs
z-{uxn)y Gs

x + (üxn)x G% 

(10b) 



It is shown in Appendix 1 that the free-surface component uF can similarly be expressed as 

u 

V 

—w 
•L 

-u-n GF - (uxn)zGF + (uxnf GF
Z 

dA < -u-n GF - (uxn)x GF + (uxn)z GF 

-u-n GF - (uxn)y GF + (üxn)x GF } 

The representations (10b), (10c) can be expressed in compact vectorial forms similar to (7a) 

(10c) 

us = 1 dA[(uxn)xVxG
s-(u-n)VxG

s} 
JT. 

(uF,vF, -wF) = / dA[(uxn)x VXG
F- (u ■ n)VxG* 

(lOd) 

(lOe) 

Expressions (10), (1), (8a) yield 

-L dA* 

where G^ is defined as 

u-n G+-<f) (nx G+ + n» G+ + nz G+) 

-u-n G+ - (uxn)zG+ + (uxÄ)wG+ 

-u-n G+ - (uxnf Gf + (üxn)zG+ 

-u-n G~ - (uxn)vG~ + (uxn)x G~ _ 

G± = GS±GF 

(11a) 

(lib) 

The free-surface component GF in (8a) and (lib) can be expressed in the alternative forms 

(12a) 4TTG' = 
F     ,    Vr' + H 

-l/r' + H 

with 

r' = J(x-tf+(y-v)2+(z+02 

Expressions (lib), (8b) and (12a) yield the alternative representations 

(12b) 

4TTG
±
 = { 

-l/r±l/r'±H 

-l/r^l/r'iW 
(13) 

By substituting (13) into (11a) we can express <f> and ü in the alternative forms 

= < 
<>R - <s>* + <t>H 

bR + d>R + d>n 
u = < 

uR -uR + UH 

uR + uR + un 
(14) 



The components <j)R, uR and 4>R, uR are defined by distributions of elementary Rankine singular- 

ities 1/r and 1/r'. Specifically, the Rankine component (j>R, uR is given by 

47T < 

-<f>R 

n.R 

,R 

w R 

-L dA< 

-(u-n)R + (t> (nxRx + nPRy + nzRz) 

-(u-n)Rx - (uxn)zRy + (uxn)vR: 

-{ü■ n) Ry - {uxn)xRz + (üxn)zR. 

-(u-n)Rz - (uxn)v Rx + (uxn)x Ry ^ 

with R = —1/r. The Rankine component <pR, uR is given by 

(15a) 

4-7T < 

-4>\ R 

U 

V 

—W 

L dA< (15b) 

-(u ■ n) R* + <j>(nxR* + nyR*y + nzR*z) 

-{u ■ n) R* - (uxn)zR*y + (uxn)y R*z 

-(ü-n)R*y-(Üxn)xR*z + {uxn)zR*x 

-(ü-n)R*z-(üxn)yRx + (üxn)xR* t 

with R* = -1/r'. The components (j)H, uH and 4>H, uH are defined in terms of the functions 

H and H, which account for free-surface effects. The free-surface component <$?, u^ — where T 

stands for either H or H — is given by 

47T < 
,^F 

—W 

-i dA< (16) 

-4? -(Ü-n)F + (j> (nxTx + n*Tv + nzTz) 

—(u ■ n)Tx - (uxn)zTy + (uxn)vTz 

-{u-n)Ty — (uxn)x Tz + {uxnf Tx 

-(u-n)Tz — (uxn)y Tx + {uxn)x Ty ^ 

The flow representation (14)-(16) is valid for a generic Green function G of the type defined by 

(8) and (12). This representation defines a free-surface potential flow in terms of the flow at a 

boundary surface S, which includes the free-surface plane EF. The contribution of Yf is now 

considered. 

Free-surface contribution for generic free-surface flows 

The contribution of the mean free surface SF, where z = 0 and (nx, nv, nz) = (0,0, -1), to the 

potential and the velocity (11a) is given by 

<t> -wG+ + ct)G+ 

u 

V 
► = /   dA< 

J-E.F 

wGt + uGt 

wG+ + vGi 

w 
<      J 

wGz - uG~ —vG 



At the free-surface plane 2 = 0, (13) yields 

4TT (G\ G+, G+, Gt) = (H, Hx , Hy , Hz) 

4ir(G~,G~,G~,G~) = -(H,Hx,Hy,Hz) 

These relations show that the contribution of the mean free surface EF is given by 

47T « dA< 

-wH + <pHz 

w Hx + uHz 

wHy + vHz 

(17) 

uHx + vHy -wHz 

The free-surface contribution (17) is considered below. The two simple special cases of an infinitely 

rigid or infinitely soft free surface are examined first. Three basic classes of free-surface flows, 

corresponding to diffraction-radiation of time-harmonic water waves without forward speed, steady 

ship waves, and time-harmonic ship waves are considered subsequently. 

Special cases of rigid and soft free-surface planes 

The free-surface contribution (17) is null if the boundary condition at EF is w = 0 and the 

function H in (12a) is chosen as H = 0, so that the Green function satisfies the condition G^ - 0 

at C = 0. The free-surface contribution (17) is also null if the boundary condition at EF is 4> = 0, 

which implies u = 0 = v, and the function H in (12a) is taken as H = 0, which yields G = 0 at 

( = 0. Thus, the potential 0 and the velocity u are defined by (14) as 

<t> 
<f>R + <P? 

>     and    u 

f                          \ r       \ 
ÜR + Ü? w = Q 

< r     if   1 > 
UR -Ü* 0 = 0 

at    z = 0 (18) 

Here, </>Ä, üR and </>R, uR are given by (15) where the boundary surface E is taken as the hull+wake 

surface EHW. 

Wave diffraction-radiation without forward speed 

The free-surface contribution (17) is now considered for the free-surface boundary condition 

w = f2cl> + p   at    2 = 0 (19) 

associated with diffraction-radiation of time-harmonic water waves without forward speed. Here, 

/ = u \fLjg is the nondimensional wave frequency, and p stands for a nonhomogeneous forcing 



term. E.g., p may account for a pressure distribution at the free surface. The corresponding Green 

function G — GS+GF satisfies the free-surface boundary condition 

Gc = f2G   at   C = 0 (20a) 

The decompositions (12a) then yield H^ = f2H at ( = 0. This relation also holds for ( < 0 since 

H and H are functions of z + £. We then have 

It follows that the Green function also satisfies the condition 

Gz = fG   at   2 = 0 

By using (19), (20b), and the Laplace equation V2H = 0 in (17) we can obtain 

-pH 

{4>Hz)x+pHx 

(20b) 

(20c) 

47T < = f  dA< 
{<t>Hz)y+pHy 

{{<t>HX)X + {<l>Hy)y-pHz\ 

The flow representation (14) then yields 

(j) = (j)R + (f>R + <j>H- (f>p 

uR + u^ + uH + uf - up 
(21a) 

The components <f>R, uR and 4>R, uR in (21a) are given by (15) where the boundary surface E is 

restricted to the hull+wake surface Y,HW. The component <f>n, uH is given by (16) with Y, = Y,HW 

and T = 'K. Stokes' theorem shows that the component u¥-, which accounts for the free-surface 

contribution (17) if p = 0, is given by 

Air < 

,H 

»? 
wV- 

= /     dC 4> < 
JT

HW (21b) 

tyHz 

-txnz 

tynx-txny^ 

Finally, the component (f)p, up associated with the nonhomogeneous term p in the free-surface 

condition (19) is given by 

47T < 
U> 

-      dAp< 
7E

F 

H 

—Hx 

—H„ 
=      dAp< 

JT.F 

H 

UP 

H„ 
(21c) 

w' Hz H, C) 



(8) and (12) yield 

4>v 

V u 
I   dAp< 

JT,F 

G 

V^G 

The representation (21a) consists of two components, which define the potential </> and the ve- 

locity u. The potential component of (21a) is a classical representation that defines (f> in the flow 

domain in terms of the values of u ■ n and (j) at the boundary surface Y,HW. This representation 

involves both the Green function and its first derivatives. The velocity component of (21a) is a new 

boundary-integral representation that defines ü in the flow domain in terms of u at the boundary 

surface EHH/and 0 = {w—p)/f2 at the boundary curve THW. The representation of it only involves 

VG, i.e. it does not involve either the Green function G or higher-than-first derivatives of G. The 

velocity component of (21a) involves the line integral (21b) around the boundary curve THW; the 

potential component of (21a) does not involve such a line integral. 

Steady ship waves 

The free-surface contribution (17) is now considered for the Kelvin free-surface condition 

w + F2ux =p   at   2 = 0 (22) 

associated with steady ship waves. Here, F = U/\fgL is the Froude number, and p stands for a 

nonhomogeneous forcing term as in (19). The Kelvin source potential G = Gs+ GF satisfies the 

free-surface boundary condition 

Gc + F2Gec = 0   at    C = 0 (23a) 

The decompositions (12a) then yield H^ + F2H^ = 0 at £ = 0. This relation also holds for C<0 

because H and H are functions of z + (,. We then have 

Hc = -F2Htt (23b) 

It follows that the functions H and H and the Green function G also satisfy the relations 

Uz = -F2HXX U = -F2HZ
XX (23c) 

Gz + F2GXX = 0   at   2 = 0 (23d) 

The function Hz in (23c) is defined as 

Hz(x-Z,y-rl,z + 0= f dt H(x - £,y - V ,t + Q (24) 
J-oo 

10 



By using the free-surface condition (22), the relations (23c), the irrotationality condition vx = uy 

and the Laplace equation V2HX = 0 in (17) we can obtain 

47T < = -F2[   dAVF-4ir< 

<t>P 

vP 

VJP 

where <f>p and up are given by (21c) and VF is the vector defined as 

VF = 

(<j>Hx -uH)x 

(u Hx)x 

(vHx)x - (uHx)y + (uHy) 

. (vHz
xy)x - (uH*y)y - (uHz)x t 

The flow representation (14) then yields 

(25) 

?-R _ i7Ä   i   ztH _ rff — itp u = u"- - ut; + u" + Up — ul 

kR   sfR on/-!  AR    -."7-R 

(26a) 

The components 0K, uH and <pf, üf in (26a) are given by (15) where the boundary surface E is 

restricted to the hull+wake surface T,HW. The component <pH, uH is given by (16) with E = SHVK 

and T-E. Stokes' theorem shows that the component <$, up1 associated with the free-surface 

contribution (17) is given by 

47T < 

-<$ 
,H 

,U 

-w H 
F ) 

= -F2[ 
Jr 

dC{ 
YHW 

utyH-<f)tyHx 

utyHx 

utyHy + u-t Hx 

utm. z-u-tEz
xy) 

= F2f 
JT 

dCl 

The identity u = (u-t)tx- (u-v)ty, where t=(tx,ty) and V = (-ty,tx) are unit vectors tangent 

and normal to the boundary curve THW, yields the alternative representation 

{u ■ v) (ty)2H -(u-t) mvH + 4>t*Hx 

{ü ■ v) (ty)2Hx - (ü -t)txtyHx 

(Ü-V) (ty)2Hy -(u-t) (txtyHy+Hx) 

{(u-u) (ty)2Hz -(u-t) (txtyHz-Hz
xy) 

Both the potential and velocity components of (26a) involve a line integral around FHW. The 

potential component is a classical representation that defines 0 in the flow domain in terms of the 

-<t>H
F 

4-7T < 
uf 

> 
vp7 

rwF. 

YHW 
(26b) 
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values of u-ft and 4> at Y,HW and the values of u and 4> at THW. This representation involves G and 

VG. The velocity component of (26a) is a new representation that defines u in the flow domain in 

terms of the boundary values of the normal velocity u ■ n, Ü ■ v and the tangential velocity u x n, 

u • t. Thus, the velocity representation does not involve </>. This representation involves VG and 

the function Hz
y defined by (24), which is comparable to a first derivative (Hz

y and VXH have 

similar behaviors in the near field and the far field). 

Time-harmonic ship waves 

The free-surface contribution (17) is now considered for the free-surface condition 

w — f<f> + i2ru +Fux = p   at    z = 0 (27) 

corresponding to wave diffraction-radiation with forward speed. Here, / and F are the nondimen- 

sional wave frequency and the Proude number, and r = fF. The ship-motion Green function 

G = Gs+ GF satisfies the free-surface boundary condition 

G(-f
2G + i2TGi + F2G^ = 0   at    C = 0 (28a) 

The decompositions (12a) yield ftc - f2H + i 2r H^ + F2H^ = 0 at ( = 0. This relation also holds 

for £ < 0 since H and H are functions of z + £ • We then have 

H( = f2H-i2TH^-F2H^ (28b) 

It follows that the functions H and H and the Green function G also satisfy the relations 

Hz = f2H + i2THx-F2Hx H = fHz + i2THz
x-FzH: 

z      IT>2 xjz 
XX (28c) 

Gz-f
2G-i2rGx + F2Gxx = 0   at   z = 0 (28d) 

Hz in (28c) is defined by (24). By using the free-surface condition (27), the relations (28c), the 

irrotationality condition vx = uy and the Laplace equation V2HZ = 0 in (17) we can obtain 

47T < = /   dA(fVf+i2TVT-F2VF)~4iT< 
JY,

F 
vP 

w p 

12 



where the component (pp, up is defined by (21c) and the vectors VF,VJ, VT are given by (25) and 

Vf = { 

0 

(d>H)x 

(<f>H)y 

((<t>H*)x + (<t>H*)yj 

The flow representation (14) yields 

Vr 

{<t>H)x 

0 

(vH)x-{uH)y 

(f> = (j)R - (j)R + ff? + </># + <$ - (j)P 

ü = üR-üR + uH+ uf + u*?+ uf - up 
(29a) 

The components (j)R, uR and <j)R, uR in (29a) are given by (15) with £ = T,HW. The component 

(j)H, uH is given by (16) with E = Sw and T = H. The component ^ , uj? is given by (26b). 

Stokes' theorem shows that the components <j>R , u^  and u¥ are given by 

47T < 
u 

T 

H 

.H 

47T < 

U 

w 

H 

H 

Jr> 
%1T\      dCl 

J-pHW 

^r^L*"*' 
w H 

<j)tVH 

0 

u-t H 

u-tEl 

-txH 

tvH*-txH* } 

(29b) 

(29c) 

In the special cases / = 0 and F = 0, (29) is identical to (26) and (21) as one expects. 

Fourier component in free-surface Green functions 

Free-surface effects in the potential and velocity representations (21a), (26a), (29a) are defined 

in terms of the components H or H in the alternative decompositions (12a) of the free-surface 

component GF in the representation (8a) of the Green functions associated with the free-surface 

conditions 
w- f24> = p 

w + F2ux =p at    z = 0 (30) 
w — f2(f> + * 2r u + F2ux = p 

for diffraction-radiation of time-harmonic waves without forward speed, steady ship waves, and 

diffraction-radiation of time-harmonic waves with forward speed. The free-surface components H 

13 



and H are given by the Fourier superposition of elementary waves 

I     roc        roo A 
T= lim   -      dß     da — £S* 

e—+0 7T J-oo    J-oo       De 

with 

F= < 
H 

H 
> A= < 

f2/k 

1 
> 

{F = O 
if 

[F>0 

{  D£ = D + ieD' 

D = {f-Fa)2-k ► 

D' = --f-Fo t 

(31a) 

(31b) 

(31c) 

(31d) 
£ = exp[ kz + i(ax + ßy)] 

£*=exp[k(-i(at + ßr])} 

In the special case F = 0, i.e. for wave diffraction-radiation without forward speed, (31b) yields 

A = 1 if k = f2, i.e. at the dispersion curve defined by the dispersion relation D = 0.   The flow 

related to the Fourier component T defined by (31) can be analyzed simply and effectively using 

the Fourier-Kochin approach expounded in Noblesse and Yang [1]. This approach is used below. 

Fourier-Kochin representation of free-surface effects 

By substituting (31a) into (16), (21b), (26b), (29b), (29c) and exchanging the order in which 

the integrations with respect to the Fourier variables (a, ß) and the space variables (x, y, z) are 

performed, we can express the free-surface components in (21a) and (29a) as 

47T < 

4 H 

un+uy 

vn+v 

wn + wV- j 

> = lim 
1     roo     roc     f- 

n    dß   dak " •/— oo J—OO    ™ 

f2£* 
DF 

Su+kSf 

Sv+kS] 

Sw+kSf 

Ait < 

4>H'+ <PF + <$ 

uH+u% + uf 

VH + vfi + vf + V? 

wH+wft + wf +w? _ 

I     roo     roc    £* 
lim   -    dß   da — 

s-*+o TrJ-ooJ-oc De 

(32a) 

(32b) 

' s<f>+F2Sf + 2TSf 

SU+F2SF +f2S] 

Sv+F2Sv
F+f2Sv

f + 2TS" 

_ Sw+F2Sf +f2Sf + 2T S? t 

if F = 0 or F > 0, respectively.   The Fourier components 4>H, uH and 4>p , üp  in the repre- 

sentations (26a) and (29a) are identical. Indeed, the Fourier-Kochin representation of steady ship 
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waves is a particular case of the Fourier-Kochin representation of time-harmonic ship waves, and 

is obtained by setting / = 0 and r = 0 in (32b). 

The spectrum functions S*, Su, Sv, Sw corresponding to the components <pn, un and 4>H, uH 

defined by (16) are given by 

Su 

Sv 

Sw 

-i ■£HW 
dA< \£ (33a) 

u-n — (ianx+ißny+knz)4> 

—iau- n — iß(üxn)z + k{üxn)y 

—ißu- n — k (üxn)x + i a (Üxn)z 

^ kü-n + ia(üxn)y—iß(üxn)x 

The spectrum functions Sf, Sf, Sj? corresponding to the components üf and uf defined by 

(21b) and (29c) are given by 

sy 
cv 

QW 
-L ■pHW 

dC{ -tx U£b (33b) 

i(aty-ßtx)/k 

with So = exp[i(ax + ßy)].  The spectrum functions £$, S$, S|, S$ corresponding to the 

component <j)f, üj} defined by (26b) are given by 

5U 
F 

QV 
Op 

F ) 

i dCl 
X>HW 

}£o (33c) 

-(ty)2 u ■ v + txty it ■ t - i a ty4> 

ia{ty)2 u ■ V - iatxty u -t 

iß(ty)2Ü-v-i(ßtxty+a)Ü-t 

-k(ty)2u-u + {ktxty+aß/k)u-t _ 

The spectrum functions S$, S?, S™ corresponding to the component </>f, u^ defined by (29b) 

are given by 

ity(j) 

i dC 
fHW 

Iiu-t        /£o 

-{ß/k)ü-t ^ 

(33d) 

Similarly, (31a) and (21c) show that the component </>p, up in (21a), (26a), (29a) is given by 

the Fourier-Kochin representation 

f           \ 

4TT < 
UP 

> 
vP 

VJP \         J 

= lim   -    dß   da^-{ \ Sp 

£-*+0  TTJ-OOJ-OC   D£       _i a 

1 

s* 
DZ 

—ia 

-iß 

k 

(34) 
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with Sp given by (35c). 

The next section shows that the 15 spectrum functions in (32) can be expressed in terms of 

4 basic spectrum functions S, S?, S*, SF. These 4 basic spectrum functions and the spectrum 

function Sp in (34) are given by 

S= dA\u-n +i — (uxn)y-i — (uxn)x]£ 
JZHW k k 

(35a) 

S? 

SF 
-i dCl 

pHW 
>£o (35b) 

(35c) 

(35d) 

i(f>(aty-ßtx)/k 

ü-t 

(txty+aß/k2)Ü-t-(ty)2u-u 

Sp = I  dApSo 
JT,

F 

With £ = ekz + i(ax + ßy) £(j = ei(ax + ßy) 

The spectrum function S, the spectrum functions 5* , 5» , SF, and the spectrum function Sp 

are respectively given by distributions of elementary waves over the boundary surface Y,HW, the 

boundary curve THW, and the mean free surface EF. The spectrum functions S, S*, SF are 

defined in terms of the normal components u ■ n, u-v and the tangential components Sxn, ü ■ t of 

the velocity u at the boundary surface T,HW and the boundary curve THW. The spectrum function 

S; is defined in terms of the potential (f>. 

Transformations of spectrum functions in Fourier-Kochin representation 

Useful transformations of the spectrum functions in (32) are given below. These transformations 

are performed in two steps. The first step is the transformation (37), which expresses the spectrum 

functions S^, Su, Sv, Sw given by (33a) in terms of the three spectrum functions 5, Sf, S* . 

The spectrum function 5^ associated with the potentials (j)n and (j)H in (32) has already been 

considered in Noblesse and Yang [1]. Expressions (33), (29), (36), (34) in this previous study, 

where the vector n normal to the boundary surface Y.HW points outside the flow domain (instead 

of inside in the present study), yield the important basic transformation 

-L dA (ianx+ißny+knz)<f) £ 
Y.HW 

if     dA[T(üxn)y-r(üxn)x]£ + S? 
JY,HW k k 

with 5*  given by (35b). The spectrum function S^ in (33a) can then be expressed as 

S(t) = S + S? (36a) 
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with S given by (35a). Expressions (33a) and (35a) immediately yield 

Sw=kS (36b) 

Section A of Appendix 2 shows that (33a) and (35a) also yield 

Su+iaS = -ißSf/k 

Sv+ißS = iaSf/k 
(36c) 

Expressions (36) yield 

's*' 1 

Su 
< > = . 

—ia 

sv 
-iß 

Sw 
V           J 

k 

}S + S* (37a) 

with 

-iß SI/k 

iaS*/k 

0 

(37b) 

These expressions for the spectrum functions S*, Su, Sv, Sw — with S, St, Si given by (35) — 

are now used to modify the spectrum functions in the Fourier-Kochin representations (32). 

The spectrum functions in (32a), corresponding to diffraction-radiation of time-harmonic waves 

without forward speed, can be expressed as 

S4> 

Su+kSf 

Sv+kS? 

Sw+kSf 

> = < 
-i a 

-iß 

k 

>(S + S+] (38a) 

with S and 5* given by (35). The expression for the spectrum function S* follows immediately 

from (37). The expression for the spectrum function related to w also follows immediately from 

(37), (33b) and (35b). The expressions for the spectrum functions related to u and v are verified 

in Section B of Appendix 2. In the special case / = 0, corresponding to steady ship waves, the 
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spectrum functions in (32b) can be expressed as 

'S*+F2S$ ' 
f 

1 

SU+F2SF
1 

SV+F2S£ 
. = < 

—to. 

-iß 

SW+F2SF
U k 

D 
(5 + F'S* )-=~s* (38b) 

Here, S and SF are given by (35), D = F2a2 - k, and S«, is defined by (37b) and (35b). The 

expression for the spectrum function related to w follows immediately from (37) and (33c). The 

expressions for the spectrum functions related to <f>, u and v are verified in Section C of Appendix 

2. In the general case fF > 0, corresponding to time-harmonic ship waves, the spectrum functions 

in (32b) can be expressed as 

> = < 
k 

' S't>+F2S'P
F + 2rSf 

Su+F2S^+f2S) 

S
V
+F

2
S

V
F+PS

V
S + 2TS

V
T 

w S
W+F2SF

! +f2Sf + 2TS? t 

where D = (Fa — /)2— k, 5* is given by (37b) and (35b), and 5 is defined as 

1 

—ia 

-iß 

k 

(38c) 

f 2CF      2r ß gt S = S + ±r-S?+FzSr- ,   , 
k k  k 

Expressions (38c) are verified in Section D of Appendix 2. These expressions are identical to (38b) 

in the special case / = 0. 

Fourier-Kochin representation of waves 

Noblesse and Chen [5,6] and Noblesse et al. [7] show that double Fourier integral representations 

of free-surface effects like (32) and (34) can be expressed as sums of wave and local components: 

(39a) 
0W-<P 

> 
<j)W+4>L 

r = l > 
un+uji 

-UP uw+uL 

<t>H + 4>^ + $ - <P 

w 

<t>w+<t>L 

UW+UL 
(39b) 

The most important result given in [5-7] is a remarkably simple expression for the wave component 

(pw, uw. This expression defines the wave components included in the double Fourier integrals (32) 
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and (34) in terms of single Fourier integrals along the dispersion curves defined by the dispersion 

relation D = 0. It follows that the second components on the right of (38b) and (38c), which 

involve the dispersion function D as a factor, do not contribute to the waves contained in the 

Fourier representations (32). Specifically, the wave component <f>w, Üw is given by 

47T < 

<f> w 

u w 

,w 

w w 

= —i V]     ds 
sign(D') + 6 -i a 

-iß 

k 

\SW£ (40a) 

Sw={ 

with £*= eCfc-iUa + »?/3) as given by (31d) _ The identity f2 = k at a dispersion curve D = 0, which 

follows from (31c), was used in (40a). (Da , Dß) are the derivatives of the dispersion function D 

with respect to the Fourier variables (a,ß). D and D' are defined by (31c) asfl= (f-Fa)2-k 

and D' = f—Fa. The function 0 is the error function 

e = erf(^+"0">) 

where a « 1 is a positive real number. The wave-spectrum function Sw in (40a) is defined by (32), 

(34), (38) as 

S + St | [ F = 0 

S + F2SF >-Sp   ifi   / = o   [ (40b) 

S + £SUF2SF-% I^J [/^>O. 
Thus, waves are defined in terms of the spectrum functions Sw and Sp given by (40b) and (35). 

In the special case / = 0, i.e. for steady flow, the spectrum function Sw is given in terms of the 

spectrum functions S and SF, which do not involve the potential <f> and are defined directly in 

terms of the velocity u.If f>0, Sw involves the spectrum function sf which is defined in terms 

of 0, although the free-surface boundary condition (30) can be used to express 0 in terms of u. 

The representation (40a) of the wave component <j>w, uw agrees with the relation 

used in Noblesse et al. [8] to determine the velocity uw from the representation of the potential 

<j)w given in Noblesse and Yang [1]. Thus, the velocity representation obtained in the present 

study and the potential representation given in Noblesse and Yang [1] yield identical waves. This 

agreement needed to be verified since the relations (38) are not a-priori obvious. 
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Conclusion 

A new fundamental mathematical representation of free-surface flows has been given. This flow 

representation, called velocity representation, is given by (14)-(16) for generic free-surface flows 

associated with a Green function G of the type defined by (8) and (12). The velocity representation, 

and the classical potential representation, are given by (18), (21), (26), (29) with (15) and (16) for 

the four classes of flows corresponding to the particular cases of (i) an infinitely rigid or soft free- 

surface plane, (ii) diffraction-radiation of time-harmonic water waves without forward speed, (iii) 

steady ship waves, and (iv) time-harmonic ship waves (diffraction-radiation with forward speed). 

The potential and velocity representations, given here for deep water, can be extended to uniform 

finite water depth, and indeed can be extended to a broader class of problems involving dispersive 

waves that propagate in the presence of a planar boundary. 

The velocity representation defines the velocity u inside a flow domain in terms of source and 

vortex distributions with strength equal to the normal and tangential components of the velocity u 

at the boundary surface. Thus, the velocity representation does not involve the velocity potential. 

This property is an important difference between the velocity representation and the classical 

potential representation, which defines the velocity potential </> within a potential-flow region in 

terms of the potential (j) and its normal derivative d(j)/dn at the boundary surface. The velocity 

representation can then be used to couple a nearfield flow calculation method based on the Euler 

or RANS equations, for which a velocity potential cannot be defined, and a farfield potential flow 

representation. Another notable difference between the potential and velocity representations is 

that the velocity representation defines ü in terms of first derivatives of the Green function G, 

whereas ü can only be obtained from the potential representation via either numerical or analytical 

differentiation of </>. Analytical differentiation of the potential representation involves second-order 

derivatives of G, as shown in (3c). 

The velocity representation provides a new mathematical basis for computing free-surface flows 

about nonlifting and lifting bodies using free-surface Green functions. In particular, this boundary- 

integral representation has been used here together with the Fourier-Kochin approach expounded 

in Noblesse and Yang [1] to obtain analytical representations, given by (40) and (35), of the waves 

generated by an arbitrary boundary velocity distribution for the three basic types of free-surface 

flows defined by the free-surface boundary conditions (30), i.e. for diffraction-radiation of water 

waves without forward speed, steady ship waves, and time-harmonic ship waves.  The analytical 
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representations of waves given by (40) and (35) are remarkably simple. The Fourier-Kochin rep- 

resentations of waves obtained here from the velocity representation and in Noblesse and Yang [1] 

from the potential representation are in agreement. Practical applications of the Fourier-Kochin 

wave representation have previously been reported, for the case of steady ship waves, in Guillerm 

and Alessandrini [2] and Yang et al. [3,4]. 

The velocity representation, which has been used here within the Fourier-Kochin approach to 

obtain analytical representations of waves generated by a boundary velocity distribution, can also 

be used to obtain corresponding analytical representations of nearfield free-surface flows. Indeed, 

the velocity representation given in the present study, the Fourier-Kochin approach expounded 

in Noblesse and Yang [1] and used here, and the practical Fourier representation of super Green 

functions given in Noblesse and Chen [6] yield remarkably simple analytical representations of 

nearfield flows for diffraction-radiation of water waves without forward speed, steady ship waves, 

and time-harmonic ship waves. These analytical representations of nearfield flows, called Rankine 

and Fourier-Kochin nearfield flow representations, which extend the Fourier-Kochin wave represen- 

tations given here, will be given elsewhere. 
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Appendix 1 

The representation (10c) is now verified. The velocity component uF in (10a) can be expressed 

in the form (3a) where ux is defined by (3c) and (9) as /E dA V\ with 

{4>GF
yy + 4>GF

zz)n
x-4>GF

yrd>-^GF
xzn

z 

Vi = I -<f>GF
xn

x + (0G£ + 0G£x)n» - 4>GF
zn

z 

(frG^n' + tG^nV-WG^ + tG&n^ 

Expression (10c) for uF — ü^- ux holds if ux can be expressed as /s dA V2 with 

'   {<j>xnV-<l>yn*)G*;-{<t>zn*-<i>xn*)GF 

V2=l    {(j)yn^-(j)zny)GF-{(j)xny-4>ynx)GF 

~(<Pz nx - 4>x nz) GF + {<t>y nz - <j>z n») GF ^ 

i.e. if /E dA {V\ — V2) is null. The x,y,z components of the vector V\ — V2 are given by 

Vx ■ n,Vv- n,—Vz- n where the vectors Vx,Vy,Vz are defined by (6). The divergence theo- 

rem applied to the vector fields Vx,Vy,Vz and the closed surface E completes the verification of 

(10c). This expression is at variance with (19c) in Noblesse et al. [8], which was obtained via an 

incorrect application of the divergence theorem to an open boundary surface. 

Appendix 2 

A. Expressions (33a) and (35a) define the function 5t* in (36c) as 

Sf= f     dA[ia(üxn)x+iß(uxn)v+k(uxn)z]£ 
J^HW 

where £ — exp[kz + i(ax + ßy)]. We have 

5*=/      dAV£-(uxn)= [     dA n- (V£ x u) = [     dAn-(Vx£u 
J^HW J^HW JY,HW 

since V x u = 0. Stokes' theorem shows that S* is the function given by (35b). 

B. Expressions (37) yield 

Su+kSf = -iaS-ißS*/k + kS? 

Sv+kSf = -ißS + iaSt/k + kSf 
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Thus, one needs to verify the relations 

-ißS*/k + kS? + iaS? 
0 = 

iaSf/k + kSf+ißSt 
}£o 

where £0 - exp[i(ax + ßy)]. Expressions (33b) and (35b) yield 

I dCl 
pHW 

Au 

Av 
> So = T < 

k 

-ß 
a 

IHwdC [u-t + i (atx+ßtv )(p]£0 

We have 

fwdC[u-1 + i (atx+ ßty )(ß]So= f HwdC t ■ V ((j)EQ) = 0 

which verifies the expressions for the spectrum functions related to u and v in (38a). 

C.     Expressions (37) yield 

S*+F2S$ = S + S?+F2S$ 

Su+F2Su = -iaS-ißSf/k+F2S$ 

Sv+F2S£ = -ißS + iaSt/k+F2S£ 

Thus, one needs to verify the relations 

(41) 

F2{S$-SF) + (l+D/k)St 

F2{S$ + iaSF)-i{l+D/k)SZß/k \ = F'l( 

F2(S$ + ißSF) + i(l+D/k)Sta/k 

Here, D = F2a2- k. These relations can be verified using (33c), (35b), and (41) 

D.     Expressions (38c) and (38b) show that one needs to verify the relations 

S$-SF+S?a2/k 

S$ + iaSF-iSfßa2/k2 

S£ + ißSF+iSfa3/k2 

2x5/ 

f2Sf 
2QV 

' f             \ 
1 

► = < 

—ia 

-iß 

k 

}[ kb*       k kb*)+       k       b* 

f2Sf + 2TS^t 

Thus, one needs to verify the relations 

kSf-aSt + ßSi/k 
kSf + iaS$ -ißSt/k 

k S] + (2F/f) kS?+ißS? + ia S*/ k - i (2F/f) k S* 

k 5/ + (2F/f) kSy-k St + (2F/f) ß S* 

These relations can be verified using (33b), (33d), (35b), and (41). 

0= < 
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